\qquad

Part A [5 points]

For each of these concepts, indicate the generation in which it was first used and to which history (hardware or software) it belongs.
COBOL
large scale integration
magnetic tape drives
Object-Oriented Design
operating systems
__ 2 hardware / software
_ 4 hardware / software
__1 hardware / software
__5 hardware / software
__3 hardware / software

Part B [1 point] - Join the Dots

The dots below are labelled in Excess notation. The labels are to the left of the dots. Connect the dots that have negative numbers as labels.
Start with the smallest value and proceed to the largest.
$\begin{array}{llllllll}1 & 0 & 0 & 1\end{array}$ • 10110
$1000 \bullet \quad 1011$ •

1110 • 111110

Part C [6 points] - Complete the table.

Show how the pattern $\mathbf{0 1 0 1 1 0 0 0}$ translates using each of the following interpretations. [1 each]

unsigned integer	88
integer in 2's complement notation	+88
integer in excess notation	-40
Hexadecimal notation	58
floating point notation	+1
ASCII	X (upper case)

Part D [8 points]

1) Perform the following calculation in Binary: [1]
0001.0101
$+0100.0011$
0101.1000
2) Express the answer for 1) as a proper fraction. [1] 51/2
3) Show how this value would be coded in 8-bit Floating Point Notation. [1] 01111011
4) Show how a computer would process this division in 8-bit binary. Show all your steps. [5]

29/9
29 converts to
9 converts to
so negative 9 is
To 29
add negative 9
$10100>1001$ so
add negative 9
00011101
00001001
11110111
00011101
$+\quad+1110111$
$100010100 \quad 1$
$\frac{+11110111}{1000001011}$
1000001011
$1011>1001$ so
add negative 9
$\frac{+11110111}{1100000010}$
1100000010

Part E [10 points] - Short!! Answer

1. If the "*" is the flag character in run-length encoding, how would the following string be decoded?

XXX*W6*56S*N4
XXXWWWWWW555555SNNNN
2. What compression ratio was achieved by encoding the string?
$13 / 20$ or .65 or 65%
3. Use the following Huffman alphabet to encode the string.
$e=00 \quad t=1111 \quad s=110 \quad h=1110 \quad r=01 \quad a=100 \quad c=101$
"trace"
11110110010100
4. \qquad
a) Huffman encoding
b) keyword encoding
c) run length encoding
d) spatial compression
e) temporal compression
5. A continuous representation, corresponding to the actual information it represents.
a) analog data
b) digital data
6. Some information may be discarded in the process of compression.
a) lossless
b) lossy
7. In general, the process of converting analog data to digital data is called \qquad .
a) digitizing
b) encoding
c) pulse-code modulation
d) re-clocking
e) sampling
8. What is the term that refers to the number of pixels used to represent an image?
resolution
9. \qquad describes an image in terms of the colour of each picture element. raster graphics
10. If an image's size is 600×500 pixels, and the colour is stored in 24 bits, how many bytes of memory are needed to store the image without compression?
$600 * 500=300,000$ pixels $* 3$ bytes/pixel $=900,000$ bytes

Part F [6 points]

1. Which Excel function can be used to calculate the smallest value of a list?
a) AVERAGE
b) MAX
c) MEDIAN
d) MIN
e) SUM
2. Which of the following is not a function category in Excel?
a) Date \& Time
b) Information
c) Math \& Trig
d) Random
e) Text
3. In Excel, the best style for formulas is to
a) use relative cell addresses
b) use named ranges
c) use absolute cell addresses
d) use a mixture of types of cell addresses
e) avoid formulas
4. A column in an Excel worksheet named Letter Grade contains the formula
=IF(Score<80,"B",IF(Score<70,"C",IF(Score<60,"D",IF(Score<50,"F","A"))))

What will appear in Letter Grade when Score is 91 ?
a) A
b) B
c) C
d) D
e) F
5. Referring to the formula in the previous question, what will appear in Letter Grade when Score is 55 ?
a) A
b) B
c) C
d) D
e) F
6. A company decides to give some of its employees a holiday bonus. Those who have been employed at the company for at least 10 years get a bonus if their performance is considered either good or excellent. Those who have not been employed at the company that long get a bonus only if their performance is considered excellent. Assume the columns are named as shown.

Years	Rating	Bonus
3	excellent	YES
15	poor	NO
12	acceptable	NO
2	good	NO
10	good	YES

Which formula could have been used to calculate the values in the Bonus column.
a) $=\mathrm{IF}(\mathrm{OR}(\mathrm{AND}($ Years<10, Rating="good"),Rating="excellent"),"YES","NO")
b) $=\mathrm{IF}($ OR(AND(Years>=10, Rating="good"),Rating="excellent"),"YES","NO")
c) $=$ IF(Rating="good" AND IF (Years>=10," YES "," NO"))
d) $=\mathrm{IF}($ Rating>="good",IF(Years>=10,"YES", "NO"),"NO"))
e) $=\mathrm{IF}($ Years>=10 AND (Rating>="good"),"Yes","No")

Part G [10 points]

S	Suit	R	Rank Card	
1	Clubs	11	Jack	Jack of Clubs
1	Clubs	9	9	9 of Clubs
3	Hearts	2	2	2 of Hearts
2	Diamonds	2	2	2 of Diamonds
4	Spades	13	King	King of Spades

The graphic to the left is from a workbook to analyze probability in card games.

This section "shuffles" cards.
\mathbf{S} is one of the integers $1,2,3$, or 4 , and is randomly chosen.
Suit is assigned by a nested IF structure according to the corresponding value of \mathbf{S}.

1. Clubs
2. Diamonds
3. Hearts
4. Spades
$\mathbf{R}_{\mathbf{-}}$ is an integer in the range 2 to 14 inclusive, also chosen randomly.
Rank is assigned by a nested IF structure according to $\mathbf{R}_{_}$, using the following mapping:

- Values in the range 2 to 10 are copied from R
- 11, 12, 13, and 14 are replaced by "Jack", "Queen", "King", and "Ace"

The formula in Card assembles the name as shown.
You are required to write ONLY SOME of the formulae.
Assume that other cells contain formulae that do what's required there.

1. Show the formula for R_. [4]
$=\underline{I N T}(\underline{\operatorname{RAND}()} \underline{* 13)}+\underline{2}$
2. Show the formula for Rank. [6]
=IF(R_<11, R_, IF(R_=11, "Jack", IF(R_=12, "Queen", IF(R_=13, "King", "Ace"))))
A variety of answers will accomplish the task. The keys are:
3 IF functions nested inside the outer IF 2 points
conditions that uniquely identify 4 values of S and map the appropriate literal strings to each value assignment of the fifth string

3 points
1 point

Part H [4 points]

All ranges have been named.

Lower bound	Letter Grade
0	F
40	E
50	D
55	$\mathrm{D}+$
60	C
65	$\mathrm{C}+$
70	B
75	$\mathrm{~B}+$
80	A
90	$\mathrm{~A}+$

Score	Grade
40	E
61	C
44	E
52	D
33	F
69	$\mathrm{C}+$
57	$\mathrm{D}+$
33	F
64	C
55	$\mathrm{D}+$

Use this table to assign a Grade for each Score.
This is a partial list of Scores showing the appropriate Grade for each.

Write the formula for the Grade column.
$=\underline{\text { LOOKUP }}$ Score, Lower bound, Letter Grade)

